If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=236
We move all terms to the left:
x^2-(236)=0
a = 1; b = 0; c = -236;
Δ = b2-4ac
Δ = 02-4·1·(-236)
Δ = 944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{944}=\sqrt{16*59}=\sqrt{16}*\sqrt{59}=4\sqrt{59}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{59}}{2*1}=\frac{0-4\sqrt{59}}{2} =-\frac{4\sqrt{59}}{2} =-2\sqrt{59} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{59}}{2*1}=\frac{0+4\sqrt{59}}{2} =\frac{4\sqrt{59}}{2} =2\sqrt{59} $
| 5(m+1)=5m+5 | | (4a+7)+(2a-6)=19 | | 5/x=61 | | 20+n=100 | | X-5=x/2+9 | | c75=-18 | | 7(x+2)=92 | | c75=18 | | 5/6b=15/36 | | 23x+5=17 | | 2(m+2)=m+4 | | 2c-6+c+3=-3 | | 17u=-578 | | -6x2+8x-10=0 | | -2x+4.5=12.5 | | -2(f+5)+4f=2 | | -4=2/3(-4)+b | | 4(m+1)=4m+1 | | 16=1-2r+5 | | -6x2-8x-10=0 | | 4m+m=5m | | 3e+2=−19 | | (8/4)(8/4)(8/4)=x | | -9p=40.5 | | 27=8-x+5-x | | 56=-9t-7 | | a/2-7=-2 | | -3=7+c/4 | | 3(x+2=17 | | -9+6x=3(-4x+3) | | 20r=60 | | 3(3x+2)-2x=7x=6 |